

Dynamical downscaling of ERA-40 reanalysis with mesoscale model ALADIN: wind mapping of Croatia

Kristian Horvath, Alica Bajić, Stjepan Ivatek-Šahdan

Research Department, Meteorological and Hydrological Service, Croatia

Introduction

In the last decade, wind energy grew rapidly worldwide

- The positive effects of wind energy:
 - Help mitigate the climate change
 - Secure energy supply
 - Bring new jobs
- Wind power plants are emerging in the coastal part of Croatia
- In 2011, 7 wind farms (89 MW) were integrated into electric network
- The largest portion of wind energy is due to north-easterly bora winds

7.3.2012., Zagreb, CRO MI2012

2

The bora winds: the Croatian "brand"

The violent and unique character of bora:

- Wind speeds over 40 m/s with gusts reaching H5 scales (~70 m/s)
- Time variability (GF>2.5, TKE>65 J/kg)
- Space variability (> 5m/s over 100 m)
- Specific vertical profiles
- Specific sub-phenomena (pulsations)

Mapping of wind resource/climate/regime

- Wind is a nation's resource
- The most accurate estimate is from long-term measurements (30 y)
- Challenges:
 - Cost
 - Longevity
 - Small spatial representativeness in mountainous terrain
- Q: How to map the wind resource/climate/regime?

Wind mapping: Numerical flow models

Wind mapping should be done with mesoscale atmospheric models

DISADV: Less accurate than measurements, large HPC resources required

Dynamical downscaling:: Methodology

"Dynamical downscaling"

STARTING LEVEL - GLOBAL ECMWF reanalysis ERA-40 Grid increment ~125 km

REFINEMENT 1 - REGIONAL Mesoscale model ALADIN/HR Grid increment ~8 km

REFINEMENT 2 – SUB-REGIONAL "dynamical adaptation" ALADIN/DADA Grid increment ~2 km

REFINEMENT 3 MICROSCALE

THE OUTPUT 10yrs of data with 60-min time interval $u,v,w,T,p,q,(\rho)$, and many others At different levels above the ground

Dynamical downscaling:: Refinement

Dynamical downscaling:: Mean wind speed at 80 m AGL

Methodology applied during a 10-year period (1992-2001)

Dynamical downscaling:: Interannual variability

In a 10-yr period, interannual variability or mean yearly wind speed up to <u>+</u> ~20% of the 10-yr mean

May have strong spatial gradients

Statistical verification and distributions

Statistical verification in different climate regimes of Croatia

Spectral verification:: Zonal/cross-mnt component

Spectral verification:: Meridional/along-mnt component

Conclusions

- Wind resource mapping is necessary for the uptake of wind energy
- European solutions may not work in Croatia's specific wind climate
- "Sub-regional" wind mapping of Croatia was successfully performed with added value of refinement in both flat and coastal areas
- Wind speed errors are rather small, but some issues important for wind energy remain
 - The mean and strongest winds on the coast are still somewhat underestimated
- The dedicated mapping of national wind resource
 - Use more local and remote sensing obs. as input for num. modeling
 - Use non-simplified model versions at high-level of refinement, such as grid spacing of ~1 km
 - Account for local microscale effects in mnt. terrain, such as "speed-up"
 - Estimate the related uncertainties

Thanks for your attention !

More info: JAMC2011, HMC2009, WINDEX project (www.windex.hr)

Dynamical downscaling:: Spectral evaluation

Kinetic energy spectrum, and it's seasonal variability

Statistical verification:: histograms

Dynamical downscaling: Spectral evaluation

Vorticity and divergence spectra

Statistical verification:: bias & rmse

 Verification performed in different climate regimes during 2001 at 10 m AGL

ZAGREB M. SL. BROD NOVALJA SPLITMI		MBIAS			RMSE		
		ERA	AL8	DA2	ERA	AL8	DA2
	SLB	1.51	0.99	1.01	0.85	0.22	0.19
	NOV	0.69	0.79	0.92	1.55	1.03	0.73
	STM	0.78	0.85	0.89	1.12	0.73	0.58
	DUB	1.00	0.91	0.91	0.18	0.35	0.33
DUBROVNIK							

- Errors of moderate magnitudes; improvement found in both flat terrain and complex terrain
- Systematic underestimation in the vicinity of complex terrain

Dyn. downscaling:: Statistical verification

Verification in different climate regimes (2001)

7.3.2012., Zagreb, CRO MI2012

19