Climate change and the Earth’s hydrologic cycle: Increased hydroclimatic intensity with global warming

Filippo Giorgi
Abdus Salam ICTP, Trieste, Italy

Zagreb, 21 November 2013
Contributors

- F. Giorgi (ICTP, Italy)
- E. Coppola (ICTP, Italy)
- F. Raffaele (ICTP, Italy)
- E.S. Im (ICTP, Italy)
- N.S. Diffenbaugh (U. Stanford, USA)
- X.J. Gao (CMA, China)
- L. Mariotti (ICTP, Italy)
- Y. Shi (CMA, China)

- Giorgi, F., E. Coppola, F. Raffaele: Some consequences of increasing hydroclimatic intensity with global warming: Reduced precipitation area and increased minimum precipitation predictability. Submitted to Climatic Change Letters.
Just Happened!!

Haiyan, Philippines
10 November 2013

Midwest US Tornadoes
17 November 2013

Storm “Cleopatra”, Sardinia
18 November 2013
... but it has been happening for a while
August 2010
Climate change can profoundly affect the Earth’s hydrologic cycle.

- **Highly localized fast process**
- **Slow smooth process**
Global warming is generally expected to lead to increased global precipitation while relative humidity remains relatively unchanged.
Projected changes in temperature and precipitation show a high degree of spatial variability (A1B scenario, 2090-2100)

Temperature change DJF

Temperature change JJA

Precipitation change DJF

Precipitation change JJA

<table>
<thead>
<tr>
<th>°C</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>-20</th>
<th>-10</th>
<th>-5</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
</table>
Observed precipitation trends are still unclear
Is it possible that changes in the hydrologic cycle due to global warming might manifest themselves primarily as changes in hydroclimatic regimes?
Global warming might lead to more intense, more frequent events.

Colder

Warmer
… or to
less intense, more frequent events

Colder

Warmer
... or yet to
more intense, less frequent events

Colder

Warmer
Projected changes in precipitation characteristics

IPCC (2007)
Observed trends in precipitation characteristics
IPCC (2007)

It rains less frequently but more intensely

IPCC 2007: “More intense and longer droughts have been observed over wider areas since the 1970s”

IPCC 2007: “The frequency of heavy precipitation events has increased over most land areas”
Hypothesis: The increases in dry day frequency and precipitation intensity are deeply interconnected and can be seen as a combined hydroclimatic signature of global warming.

Define an index of hydroclimatic intensity that combines precipitation intensity and dry spell length:

\[\text{HY-INT} = I \cdot DSL \]

- \(I \) = Normalized Precipitation Intensity
- \(DSL \) = Normalized Dry Spell Length

HY-INT is NOT an index of extremes.

HY-INT is calculated from daily precipitation on an annual basis.
21st Century trend of HY-INT for three GCM projections, A1B Scenario
Giorgi et al. (2011)

ECHAM5
21st Century trend of HY-INT for three RCMs Giorgi et al. (2011)
21st Century trend of HY-INT for ten GCM projections from CMIP5, RCP8.5, Land Only Giorgi et al. (2013)

21st Century trend in HY-INT
Late 20th Century trend of HY-INT from station Observations Giorgi et al. (2011)
It appears that a robust response of the hydrologic cycle to global warming is a shift to more intense, less frequent events.
A diagnostic explanation of this response.

ECHAM5 model, A1B scenario

% change per degree of global warming

PRW (8.74) → INT (4.58) → HY-INT (8.34)

EVP (2.04) → PRE (2.16)
Some interesting consequences of the hydroclimatic regime shift in response to global warming
21st Century trend of precipitation area for ten GCM projections from CMIP5, RCP8.5, Land Only Giorgi et al. (2013)

21st Century trend in Precipitation area

Longer dry seasons shorter and more intense wet seasons
21st Century trend of successful Persistence
Forecasts for ten GCM projections from CMIP5, RCP8.5, Land Only Giorgi et al. (2013)

Global warming might lead to an increase in minimum precipitation predictability

21st Century trend in Precipitation area
Summary

• A regime shift towards more intense, less frequent precipitation events appears to be a robust response to global warming
• This response implies greater risk of flood and drought with global warming
• The index HY-INT can be used as an effective measure of this response and can provide a useful hydroclimatic detection and attribution tool
• The increase in hydroclimatic intensity implies a decrease in daily precipitation area and an increase in minimum precipitation predictability (as defined by persistence)
• Understanding of this hydroclimatic shift might provide key information on the inherent behavior of the Earth’s hydrologic cycle