FRSISTENCY AS A REFERENCE IN VERIFICATION **F FO**RECAST WITH CATEGORICAL PREDICTANDS

Iris Odak, prof. dr. sc. Zoran Pasarić

Zagreb, 22. 11. 2013.

INTRODUCTION

- "Good forecast" what does it mean?
 - <u>Quality</u>, consistency and value
- Finley affair
- Verification of the precipitation forecast (24h accumulation):
 - ALADIN regional model (2008.-2011.)
 8 km horizontal resolution, 37 vertical levels, boundary conditions from ARPEGE global model
 - ECMWF global model (2007.-2011.) 0.25° horizontal resolution, 62 vertical levels
 - Locations: Rijeka, Split, Zagreb, Osijek

METHODS

- Precipitation- categorical predictand
- 3 categories
- Thresholds: 0.2 mm and 66. percentile
- Contingency tables

Precipitation	[mm/24h]
---------------	----------

		OBSERVATIONS				
		DRY	LIGHT	HEAVY	Σ	
RECAST	DRY	А	В	С	D	
	LIGHT	E	F	G	Η	
	HEAVY	Ι	\mathbf{J}	K	\mathbf{L}	
FO	Σ	М	Ν	0	Р	

VERIFICATION MEASURES:

• Climatological probability:

• Accuracy (Percent Correct):

- Influence of P
- Frequency bias:

• < or > 1?
$$FBIAS_{d} = \frac{D}{M}; FBIAS_{1} = \frac{H}{N}; FBIAS_{h} = \frac{L}{O}$$

		OBSERVATIONS				
		DRY	LIGHT	HEAVY	Σ	
RECAST	DRY	А	В	С	D	
	LIGHT	\mathbf{E}	\mathbf{F}	G	Н	
	HEAVY	Ι	J	K	L	
FC	Σ	М	Ν	0	Р	

$$P_{\rm d} = \frac{M}{P}; \quad P_{\rm l} = \frac{N}{P}; \quad P_{\rm h} = \frac{O}{P}$$

$$ACC = \frac{A+F+K}{P} * 100\%$$

$$ACC = \frac{A+F+K}{P} * 100^{\circ}$$

$$ACC = ---$$

;
$$FBIAS_{\rm h} = \frac{L}{2}$$

VERIFICATION MEASURES:

- Polychoric Correlation Coefficient measure of association
- Bivariate normal joint distribution

SKILL SCORES.		OBSERVATIONS				
DRILL DUULLD.			DRY	LIGHT	HEAVY	Σ
F	L	DRY	А	В	С	D
	AS	LIGHT	Ε	\mathbf{F}	G	Η
	REC	HEAVY	Ι	J	K	L
	FC	Σ	М	N	0	Р

• General:
$$SS = \frac{S_{prog} - S_{ref}}{S_{ideal} - S_{ref}}$$

• Random forecast as a reference:

• Heidke Skill Score:
$$HSS = \frac{A + F + K - \frac{MD + NH + OL}{P}}{P - \frac{MD + NH + OL}{P}}$$

• Pierce Skill Score:
$$PSS = \frac{A + F + K - \frac{MD + NH + OL}{P}}{P - \frac{M^2 + N^2 + O^2}{P}}$$

SKILL SCORES:

SEEPS:

• Error measured in 'probability space'

- Equitable (1-SEEPS)
 - Scoring matrix
 - Refinement

$$SM = \frac{1}{2} \begin{bmatrix} 0 & \frac{P}{P-M} & \frac{P}{O} + \frac{P}{P-M} \\ \frac{P}{M} & 0 & \frac{P}{O} \\ \frac{P}{M} + \frac{P}{P-O} & \frac{P}{P-O} & 0 \end{bmatrix}$$

SM =	0 1.494 5.922	0.752 0 4.429	$\begin{array}{c}1.315\\0.546\\0\end{array}\right]$			OBSERV	ATIONS	
					DRY	LIGHT	HEAVY	Σ
			Ы	DRY	А	В	С	D
			AS	LIGHT	\mathbf{E}	\mathbf{F}	G	Η
			REC	HEAVY	Ι	J	K	\mathbf{L}
			FO	Σ	М	Ν	0	Р

SKILL SCORES:

• Persistency as a reference:

$$pCSI_k = \frac{CSI_{model,k} - CSI_{perz,k}}{1 - CSI_{perz,k}}$$

$$pPCC = \frac{PCC_{model} - PCC_{perz}}{1 - PCC_{perz}}$$

$$pHSS = \frac{HSS_{model} - HSS_{perz}}{1 - HSS_{perz}} \qquad pPSS = \frac{PSS_{model} - PSS_{perz}}{1 - PSS_{perz}}$$

Same for (1-SEEPS), GSS and any other....

SKILL SCORES - PERSISTENCY AS A REFERENCE

• SS generally differ in size \rightarrow pSS as well

8 HSS_{perz} i PSS_{perz} larger ~ 0.06 for Aug than Jul → larger difference
 • HSS_{ALADIN} > HSS_{ECMWF} u Jan → larger difference SS and pSS

• Inheritance of original verification measure properties

• Os (I.): PCC & CSI (E) > PCC & CSI (A)(for \forall categ.)

→ larger (1 - SEEPS) & HSS

Os (III.): ≈ PCC i CSI_{umj}.
 CSI_{dry}: ALADIN > ECMWF (0.13)
 CSI_{heavy}: ECMWF > ALADIN (0.06)
 → larger (1 - SEEPS) for ECMWF
 → smaller HSS

- Biggest difference between SS and pSS for climatologically most probable category ('Dry')
- For climatologically least probable category ('Heavy prec.') SS and pSS are almost the same

DEPENDENCE ON LEAD TIME

 o Reference: random forecast → SS monotonically decreases persistency → pSS has a maximum!!!

CONCLUSION

- Rare or extreme events → persistency as a reference makes more sense
- Comparison with persistency pSS differs more for SS with smaller values (HSS)
- Mostly affects the most probable category (not rare events or extremes)
- Usually maintains the similar shape as measure it is derived from
- It inherits properties of original measure
- Has a specific dependency on lead time that has to be taken into consideration

Questions or suggestions?

THANK YOU!!!

POPIS LITERATURE

- ALADIN Numerical Weather Prediction Project, (2008.): http://www.cnrm.meteo.fr aladin-old
- o DHMZ, (2012.): http://radar.dhz.hr/~moho/aladin
- ECMWF, (2012.): <u>http://www.ecmwf.int/about/overview</u>
- Gandin, L. S., Murphy, A. H. (1992.): *Equitable Skill Scores for Categorical Forecasts*. Mon. Wea. Rev., 120, 361–370.
- Gerapetritis, H., Pelissier, J. M. (2004.): *The critical success index and warning strategy*. Preprints, 17th Conf. on Probability and Statistics in Atmospheric Sciences, Seattle, WA, Amer. Meteor. Soc., 2.10.
- Hamill, T. M., Juras, J. (2006.): <u>Measuring forecast skill: is it real skill or is it the varying climatology?</u> Q.J.R. Meteorol. Soc., 132, 2905–2923.
- Jolliffe, I.T., Stephenson, D.B. (2003.): *Forecast Verification: A Practitioner's Guide in Atmospheric* <u>Science.</u> Wiley, West Sussex, 240 pp.
- Juras, J., Pasaric, Z., (2006.): <u>Application of tetrachoric and polychoric correlation coefficients to forecast</u> <u>verification</u>. Geofizika, 23, 59–81.
- Murphy, A. H., (1993.): <u>What Is a Good Forecast? An Essay on the Nature of Goodness in Weather</u> <u>Forecasting</u>. Wea. Forecasting, 8, 281–293.
- **Murphy, A.H.,** (1996.): <u>*The Finley affair: A signal event in the history of forecast verification.* Wea. and forecasting, 11, 3-20.</u>
- Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T., (2010.): <u>A new equitable score suitable for</u> <u>verifying precipitation in numerical weather prediction.</u> Q. J. R. Meteorol. Soc. 136, 1344-1363.
- Wilks, D.S. (1995.): *Statistical Methods in the Atmospheric Sciences* (2nd edition). Academic Press, New York, 627 pp.