Wind forecasting for energy management in Croatia

A. Bajić¹, K. Horvath¹, A. Horvat-Sedlić², T. Plavšić², A. Stanešić¹, S. Ivatek-Šahdan¹

¹Meteorological and Hydrological Service
²Croatian Transmission System Operator
Content

1. Why do wind forecasting?
2. Wind forecast
3. Energy production forecast
4. Summary
• Understanding how much wind farm will produce in the next hours is crucial to make the right decisions, either in the energy market or for maintenance planning.
Why do wind forecasting?

- Unforecasted wind fluctuations increase requirements for spinning reserves and raise electricity system production costs
- Unforecasted large ramp events can affect electricity system reliability
- Wind forecasts become essential for effective grid management with high wind penetrations
- State-of-the-art forecasts have high economic value compared to their cost (but potential savings are not always realized)

2009. - operational wind speed and direction forecast at wind farm locations for the Croatian Transmission System Operator
Wind forecasting

ALADIN operational numerical weather prediction model

1. full-physics model
 spectral model - hydrostatic mode
 with 37 vertical levels
 horizontal resolution 8 km

2. dynamical adaptation –
 dynamically adjusting near-surface wind
 horizontal resolution 2 km
Observed (OBS) and modeled (MOD) wind speed (WS) and wind direction (WD) at 80 m above ground level at the ZD2 wind farm

Acknowledgement to the Eko d.o.o. for mast measurements
Energy production forecasting system
Wind Power Planning Tool (WPPT) (Giebel and Nielsen, 2008)

Weather observations

NWP model

Wind farm output and Statistical model

Wind farm energy production forecast

Weather observations at wind farm sets the initial conditions (currently off)

Numerical weather prediction model forecasts evolution of weather system

Statistical model converts wind to power output and corrects for systematic biases and error patterns

Actual wind farm production data provide feedback to improve the statistical models
Forecasted and realized monthly energy production at one of the wind farms in the Šibenik-Knin County in for 2012. year.
Forecasted and realized hourly energy production – December 2012

Forecasted and measured wind speed at Šibenik – December 2012
Summary

• Wind forecasting is becoming ever more important as wind penetration grows

• Current forecasting is not perfect but nonetheless highly cost effective compared to no forecast at all

• Forecast should be customized to the real needs of the users in energy sector

• Improvements lie in better models and better use of models

• Project – WILL4WIND Weather Intelligence for Wind Energy