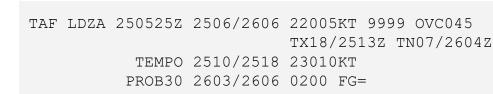


First results of forecast verification of Terminal Aerodrome Forecast TAF during the last 10 years

Jadran Jurković

Igor Kos

Challenges in meteorology 6 15-16 November 2018., Zagreb


Outline

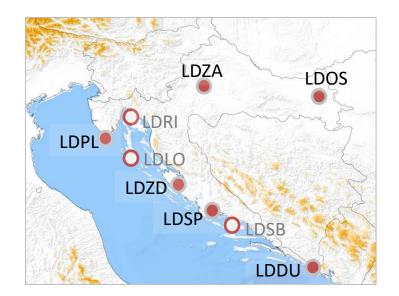
- introduction
- method of verification
- verification result
- trend in results 10 years
- conclusions

Introduction

- TAF Terminal aerodrome forecast
 - Standard ICAO product
 - forecaster
 - validity 24h
 - every 6 hours (+amendment)
- Quality management system ICAO Annex 3
 - proving the accuracy of forecasts for aviation
 - there is no standard method for verifying TAFs
- Verification observed state METAR report
 - every 30min

Introduction

- Verification in document: *Monitoring procedure*
 - seasonal report; in real time; diagnostic verification
- Quality
 - verification report (within 2 months)
 - results and conclusion
 - meeting
 - possible corrective actions
 - mail to forecasters, detailed diagnostic verification, new education, proposals to forecasting or observing systems


Verification method

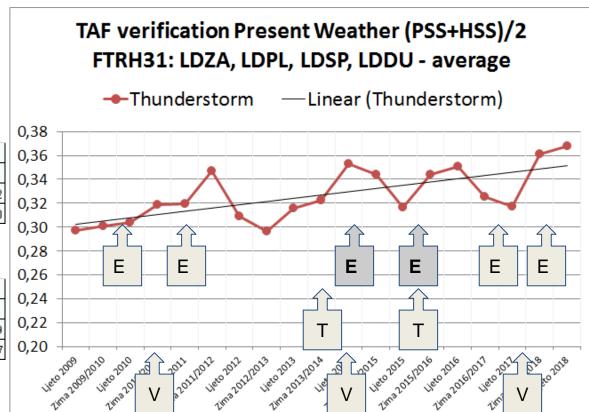
- Methodology similar to Met Alliance Mahringer (2008)
 - based on criteria for group of changes
 - verifying for every hour
 - Best (FC and OBS) and worse (FC and OBS) conditions are verified
- 9 airports: ~35000 FCST hours/year
- Scores (KPI):
 - number of correct forecasts wind speed
 - e.g. |FC-OBS|<10KT
 - (HSS+PSS)/2 for continuous variables
 - visibility, ceiling, present weather, wind gusts

Verification report

- summer 4-9, winter 10-3
 - 1st report : winter 2017/2018
- All airports

Verification results - 10 years

- changes from 2009.
 - personnel
 - optimized organization of forecasting tasks
 - forecasting tools
 - additional effort in training (e.g. convection, wind and fog)
 - verification
- variation of results
- positive trends: thunderstorm, wind gusts, temperature
- negative trends: ceiling


Result thunderstorm

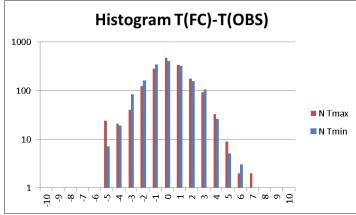
LDDU 2009

PW_TS	OBS			
FC	yes		no	
yes		93		1332
no		145		15830

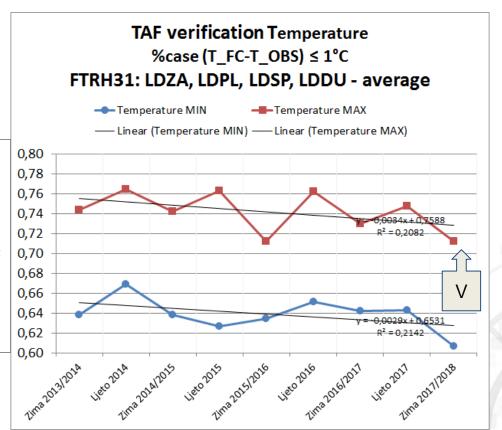
2018

PW_TS	OBS			
FC	yes		no	
yes		285		1729
no		168		15377

Education

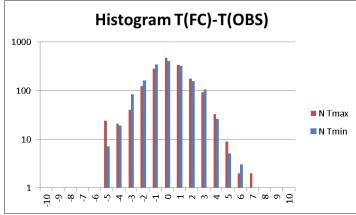

Technology

Verification

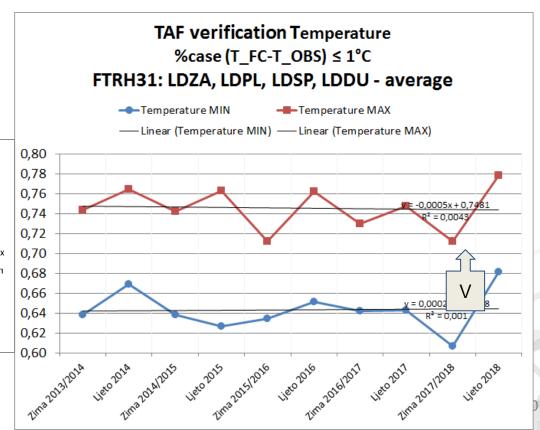


Results temperature

- FC 24h Tmax Tmin and timing (hour)
- from 2013.



±1°C in 70% cases



Results temperature

- FC 24h Tmax Tmin and timing (hour)
- from 2013.

±1°C in 70% cases

Conclusions

- Verification system has been established, and regular reports are produced
- Positive trends for thunderstorm and wind, temperature
- Permanent monitoring of the TAFs quality, together with corrective actions, gives better forecasts

Constraints and problems

- input data TAF and METAR
 - e.g. thunderstorm ~16km
- method
 - criteria thresholds
- results scores
- rare events
 - forecast for a given point
 - the verification period is just one hour
 - aviation requirements usually refer to high impact weather
 - climatological difference

