A coordinated effort to investigate Transport and Exchange Processes in the Atmosphere over Mountains-Experiment (TEAMx)

Ivana Stiperski, Mathias W. Rotach, Marco Arpagaus, Joan Cuxart, Stephan De Wekker, Vanda Grubišić, Norbert Kalthoff, Dan Kirshbaum, Manuela Lehner, Stephen Mobbs, Alexandre Paci, Stefano Serafin, Dino Zardi
Mountain Weather and Climate

- traditionally: impact of mountains on weather
 → orographic precipitation
 → gravity waves, ~ breaking
 → blocking, Föhn, Bora & co
 → dynamic features

- Alpex, Pyrex, MAP, MATERHORN,

Recent developments (since MAP):
- climate change additionally in the focus
 → requires models able to (also) realistically reproduce mountain climate (impact modeling)
- model resolution ↑ - but not (?) corresponding physics
- new observational possibilities
 → commercial Doppler wind lidars, satellites
Mountain Weather → Climate

- **weather (traditional):** mountain → atmosphere perspective → how does ‘the mountain’ modify the precipitation regime → how does ‘the mountain’ trigger downslope wind storms → surface characteristics of $\mathcal{O}(100 \text{ km})$

![Diagram showing orographic precipitation and wind patterns around a mountain.](http://kbkb-wx.blogspot.co.at/2014/04/orographic-precipitation.html)

Steinacker et al. (2005)
Mountain Weather → Climate

- **climate** (and climate change)
 → treats the same atmosphere...
 → requires impact modeling
 → need: (e.g.) *the right temperature* at mountain surface (not only the mtn. sfc. temperature that yields the ‘right precipitation’)

- Mountain (surface) ↔ atmosphere perspective
- how does ‘the mountain’ influence the atmosphere?
- what near-surface atmosphere is produced close to the mountain?
 → impact modeling
Mountain Weather → Climate

- climate/atmosphere system:
 → ‘mountain’ is part of the surface
 → character of the surface

- character of the surface
 → determines the exchange between the atmosphere and the earth
 → coupling of the atmosphere with the surface

Exchange processes in the Atmosphere over Mountains

http://www.panoramio.com/photo/1724212
Mountain ↔ Atmosphere perspective

- Exchange
 → heat, mass and momentum *at the surface*

- traditionally: this is the role of the *boundary layer*
 → transport to the ground / away from the ground

- over mountainous surface
 → interaction with meso-scale mountain flows

→ ‘Mountain Boundary Layer’

Rotach et al. 2015
Mountain Boundary Layer (Lehner & Rotach 2018)

unstable stratification (daytime)

stable stratification (nighttime)
A new international initiative

TEAMx

Transport and Exchange processes in the Atmosphere over Mountainous terrain - programme and eXperiment

- discussion started: after ICAM-2015
- meetings aside conferences
- Coordination and Implementation Group established (9/2017)
- White Paper in preparation, special issue ‘Atmosphere’
- Program Office: @UIBK (‘crowd funded’)
 → coordination;
 → int. embedding – WWRP, WCRP;
 → joint projects (H2020, ...);
topics:
- BLs in complex terrain
- thermally driven flows
- dynamic transport (waves, breaking, ...)
- convection & orography
- impact on orogr. precip.
- stable BLs
- pollutant transport and dispersion
→ and their interactions
methods:
- numerical modeling → NWP (km scale, LES)
- regional climate → processes and parameterizations
- observations → turbulent exchange → Lidar, scintillometer → obs strategies

goal:
→ coordinated experiment
TEAMx

Research questions

→ how does mountainous terrain impact exchange to the free atmosphere of energy, mass and momentum? (which processes, interaction, abundance, ...)

→ do we understand the relevant processes quantitatively?

→ are current models (regional climate, NWP) able to adequately reproduce these processes?

→ do we need a sgs-parameterization (as for gravity wave drag) for \(\mathcal{O}(10 \text{ km})\) grid spacing models?

→ how does mountainous terrain affect air quality?
TEAMx

partners (so far...):

• University of Innsbruck
• University of Leeds (NCAS)
• Karlsruhe Institute of Technology (KIT)
• Mc Gill University
• University of Trento
• University of Virginia

• MeteoSwiss
• Meteo France (CNRS)
• NCAR
• ZAMG

Additional partners with innovative ideas and commitment (very) welcome!
White paper – Atmosphere Special Issue

“Atmospheric Processes over Complex Terrain”

• Lehner and Rotach (2018): Current Challenges in Understanding and Predicting Transport and Exchange in the Atmosphere over Mountainous Terrain
• Serafin et al. (2018): Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain
• Vosper et al. (2018): Current Challenges in Orographic Flow Dynamics: Turbulent Exchange Due to Low-Level Gravity-Wave Processes
• Kirschbaum et al. (2018): Moist orographic convection: Physical mechanisms and links to surface-exchange processes
• Emais et al. (2018): High-resolution observation of transport and exchange processes in mountainous terrain
• De Wekker et al. (2018): Meteorological Applications Benefiting from an Improved Understanding of Atmospheric Exchange Processes over Mountains
• Hacker et al. (2018): Challenges and Opportunities for Data Assimilation in Mountainous Environments
• Chow et al. (2018): Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain
Thank you for your attention!

Ivana Stiperski, Mathias W. Rotach, Marco Arpagaus, Joan Cuxart, Stephan De Wekker, Vanda Grubišić, Norbert Kalthoff, Dan Kirshbaum, Manuela Lehner, Stephen Mobbs, Alexandre Paci, Stefano Serafin, Dino ZARDI
TEAMx

- Memorandum of Understanding
 → states importance of topic
 → signatories concur with general ‘need for action’
 → founding members (Partner list A) sign it
 → as many supporting institutions as possible (Partner list B) sign as well (ICAM ‘countries’ / institutions, AMS MM Committee, GEWEX, individual institutions, departments, ..)

- Support of TEAMx-seed (program office @UIBK)
 → bilateral contracts
 → tasks / deliverables specified
 → two years (‘seed’)