Expected climate changes in dry spells over Croatia

Marinović, Ivana¹, Cindrić, Ksenija¹, Güttler, Ivan¹, Pasarić, Zoran²

¹ Croatian Meteorological and Hydrological Service, Zagreb, Croatia
² Geophysical Department, Faculty of Science, University of Zagreb, Zagreb, Croatia

Challenges in Meteorology 6 15 -16 November 2018 Zagreb, Croatia

Introduction

- <u>The precipitation regime</u> in Croatia is caused by the general circulation of atmosphere over northern middle latitudes & strongly modified by local factors (Mediterranean & Adriatic Sea, Dinaric Alps).
- Significant spatial differences in average precipitation amounts and frequency between the <u>continental, mountainous</u> and <u>coastal</u> areas.
- Croatia belongs to the <u>transitional area</u> between northern Europe with an increase in average precipitation & drying Mediterranean.

Recent studies...

- Trends of extreme precipitation indices
 Gajić-Čapka et al. (TAC, 2014) → 132 stations in Croatia, 1961-2010 → decreasing trend in annual precipitation is caused by a statistically significant increased frequency of dry days (prec. < 1 mm)
- Dry spell → one of the extreme precipitation indices
 Monitoring of dry spells during a month/ season provides another insight into particular precipitation
 → useful in engineering studies that deal with agricultural, irrigation or field operations systems
- Very few dry spell studies in Croatia
 Cindrić et al. (TAC, 2010) → 25 stations in Croatia, 1961-2000 → DS climate & DS trends → MEAN and MAX dry spell durations → (mostly) negative trend for autumn; (mostly) positive trend for other seasons and whole year (prec. < 0.1,1,5,10 mm)

→ no systematic climatological analysis of dry spells!

Drought in Croatia

- Causes the highest economic losses (39 %) inflicting serious damages, especially in agricultural sector
 Damages caused by natu (1981-2010)
- **2003** damage on drought was 90 %
- 2011/2012 (Cindrić et al. 2014, TAC)
- 2015 (Ionita et al. 2017, HESS);
- 2017
 more than 100 consecutive days (prec. < 5 mm)</p>
 & large precipitation deficit
 & extremely high air temperature
 during summer months

Drought in Croatia

- Main goal of this study:
 - systematic spatial & temporal analysis of dry spells (DS) in Croatia for the extended period 1961–2015
 - projections and future changes in the DS statistics
 - \rightarrow for establishing the drought risk assessment

- DriDanube Drought risk in Danube Region
 - to improve the drought emergency response
 - prepare better for the next drought
 - (search for the poster) 😳

Data \rightarrow observation

- **Daily** precipitation data
- 132 stations (Croatian Meteorological and Hydrological Service - DHMZ)
- Time period: 1961-2015

$Data \rightarrow model$

- Regional climate model (RCM)
 - from EURO-CORDEX initiative: **RegCM4** (Giorgi et al. 2012)
 - forced by the four CMIP5 global climate models (MOHC-HadGEM2-ES, CNRM-CERFACS, ICHEC-EC-EARTH, MPI-M-MPI-EMS-MR)
 - European domain at the **12.5-km** horizontal resolution (realistic orography & land-sea structures)

• 3 periods: 1971–2000 ; 2011–2040 & 2041–2070

Data \rightarrow 7 regions

Reg1: Eastern mainland → Osijek Reg2: Western mainland \rightarrow Zagreb Reg3: Central hinterland → Ličko Lešće Reg4: Mountainous region → Ravna Gora Reg5: Mountainous littoral → Rijeka Reg6: North Adriatic coastal → Mali Lošinj Reg7: Central & South Adriatic coastal → Split

- Dry spells (DS) consecutive sequences of days having daily precipitation less than the given threshold (1, <u>5</u>, 10 mm)
 - DS beginning in one season but extending to the next is accounted in the season in which it started (Buishand, 1978)
- Analysis of DS duration:
 - MAX & Mean
 - Annual & seasonal (DJF, MAM, JJA, SON)

Methods → trends

- Means of Kendall' tau method (Sen 1968; Zhang et al. 2004)
 - \rightarrow statistically robust and resistant
- Non-parametric Mann-Kendall test (Gilbert 1987)
 - \rightarrow statistical significance of Kendall's tau trend
- Innovative partial trend methodology (Öztopal and Şen, 2016)
 - MAX & Mean annual DS duration days
 - Comparation: 1961-1985 & 1986-2010

Methods → model

- 4 global models \rightarrow **RegCM4**
- 1 station (grid cell) from each region
- Mean DS (5 mm)
- seasonal and annual timescale
- present & 2 future periods
- RCP4.5 & RCP8.5 scenario

Results & Discussion

- Annual Mean & MAX DS
- 3 categories (1, 5 and 10 mm)
- Reg 4 the shortest DS
- Reg 1, 7 the longest DS
- 1 mm small differences
- 10 mm large difference

Longer DS:

Continental regions

Adriatic region (south)

14

Results → **trends**

- Annual MAX & Mean DS durations days per decade
- prevailing POSITIVE trends

 \rightarrow few sign. in MAX; prevailing sign. in Mean – Reg 5 & 6

15

Results → **trends**

	SON	DJF	MAM	JJA	Year
MAX	-	+ 0 (R7)	+ 0 (R7)	+	+
SIGN. Reg.	4			5, 6	
Mean	0	0	+	+	+
SIGN. Reg.			5, 6	5, 6	5, 6

$\textbf{Results} \rightarrow \textbf{partial trends}$

- MAX & Mean DS \rightarrow similar results
- 1986-2010 (y axis) vs 1961-1985 (x axis)
- prevailing POSITIVE trends in recent period → Adriatic coastal (Reg 5,6,7)
- trend is not clear \rightarrow continental & mountainous regions (Reg 1 4)

Results \rightarrow **model**

- SUMMER → increase in DS duration
 (especially for 2nd period, ▼♦)
 → in agreement with general reduction
 of the total precipitation amount in
 RegCM4 projections
- WINTER \rightarrow no clear signal
- Reg 3 & 4 → the driest one → diversity of Croatia is well captured in models
- Station Rijeka in Reg 5
- $HA \rightarrow the driest one$
- $CN \rightarrow the wettest one$

Results → **model**

- SUMMER → increase in DS duration
 (especially for 2nd period, ▼♦)
 → in agreement with general reduction
 of the total precipitation amount in
 RegCM4 projections
- WINTER \rightarrow no clear signal
- Reg 3 & 4 → the driest one → diversity of Croatia is well captured in models
- Station Rijeka in Reg 5
- $HA \rightarrow the driest one$
- $CN \rightarrow the wettest one$

Results → **model**

- SUMMER → increase in DS duration
 (especially for 2nd period, ▼♦)
 → in agreement with general reduction
 of the total precipitation amount in
 RegCM4 projections
- WINTER \rightarrow no clear signal
- Reg 3 & 4 → the driest one → diversity of Croatia is well captured in models
- Station Rijeka in Reg 5
- $HA \rightarrow the driest one$
- $CN \rightarrow the wettest one$

Results \rightarrow **model**

- SUMMER → increase in DS duration
 (especially for 2nd period, ▼♦)
 → in agreement with general reduction
 of the total precipitation amount in
 RegCM4 projections
- WINTER \rightarrow no clear signal
- Reg 3 & 4 → the driest one → diversity of Croatia is well captured in models
- Station Rijeka in Reg 5 -----
- **HA** \rightarrow the driest one
- $CN \rightarrow the wettest one$

(Future) – (Present) \rightarrow DS (2nd period, Δ) > DS (1st period, **O**)

DS (RCP4.5) ≈ DS (RCP8.5)

RCP8.5.1-HI

RCP8.5.2-HIS

CN

2

3 4 5

Conclusion

DRY SPELL analysis

- MAX & Mean, seasonal & annual timescale, 7 regions in Croatia
- the shortest $\text{DS} \rightarrow$ in mountainous region
- the **largest** $DS \rightarrow$ in continental (SON, DJF) & Adriatic region (MAM, JJA)
- significant **positive** trend \rightarrow in mountainous region in MAM, JJA
- consistent **negative** trend \rightarrow in SON in whole Croatia, **sign**. in mountainous region

24

- Climate models indicate DS increase in SUMMER, particularly for later period
- DS (2nd period) > DS (1st period)
- DS (RCP4.5) ≈ DS (RCP8.5)
- Future work → to include more RCMs (CLM & RCA4) in analysis to estimate uncertainties related to the selection of the RCM-GCM couple

Thank you for your attention! ivana.marinovic@cirus.dhz.hr

"U izradi ovog dokumenta korišteni su rezultati regionalnog klimatskog modela RegCM4 dobiveni u sklopu projekta "Jačanje kapaciteta Ministarstva zaštite okoliša i energetike za prilagodbu klimatskim promjenama te priprema Nacrta Strategije prilagodbe klimatskim promjenama (Broj ugovora: TF/HR/P3-M1-O1-010)" koji se financira sredstvima iz Prijelaznog instrumenta tehničke pomoći EU."

