* Ivan Smiljanić, Zrinko Bahorić, Nataša Strelec Mahović (Meteorological and Hydrological Service, Zagreb, Croatia)

VALIDATION OF MPEF GII PRODUCT AGAINST SOUNDING AND LIGHTNING DATA -IMPLICATIONS ON CONVECTION FORECAST

Ivan Smiljanić

> MOTIVATION

convection as a frequent and high-impact weather

- □ satellites high spatial and temporal resolution, wide are coverage
- suitable for operational usage continuous tracking and forecasting/ nowcasting of dangerous weather
- emphasis on "clear-air" convection

> GII indices

- combination of NWP (ECMWF) and satellite data (MSG satellite)
- □ observed MPEF GII indices: K0, K, LI, TPW
- **SEVIRI** instrument resolution: 3x3 (4x4) km/pixel, 5 min (rapid scan)
- obtained by PRM method
- drawback applicable only for cloud free are

pseudo IR fitting satellite IR

- **•** KO = 0.5 [$(\Theta_{e \ 500} + \Theta_{e \ 700}) (\Theta_{e \ 850} + \Theta_{e \ 1000})$]
- $\square \qquad K = (T_{850} T_{500}) + Td_{850} (T_{700} Td_{700})$
- **LI** = $T_{500} Tp_{500}$
- TPW = vertical integration of moisture content

> GII vs. lightning

(Mikuš and Strelec-Mahović, 2013)

verification by lightnings - LINET network

Example: 19 May 2009.

non-gradient pressure field

SW flow

9E 10E 11E 12E 13E 14E 15E 16E 17E 18E 19E 20E

CII = 0.8 × [Mixed K Index contribution + Mixed Total Totals contribution + Lifted Index contribution + Precipitable Water contribution] + 0.2 × [Topography contribution]

(de Coning et al., 2010)

> COMBINED INDEX

- construction problem: different units, different scales, nonlinearity index-lightning...
- □ solution: Hanssen-Kuipers (HK) discriminant

Event Forecasted	Event Observed		
	YES	NO	Total
YES	a	b	a+b
NO	с	d	c+d
Total	a+c	b+d	n

$$HK = \frac{(ad - bc)}{\left[(a + c)(b + d)\right]} \qquad \frac{POD = \frac{a}{a + c}}{FAR = \frac{b}{a + b}}$$

> COMBINED INDEX

> statistical parameters for indices (Summer season 2009)

K index

(de Coning et al., 2010)

> COMBINED INDEX

> CONCLUSION

- good overlaping of instability areas (GII) with lightning
- □ forecasting/nowcasting of convection from 3 to more than 12 hours
- □ time tracking significance of GII
- □ high correlation between GII and radiosounding indices
- high temporal and spatial resolution, wide area
- applicable only for cloud-free area
- meaningful statistics to calculate CII index
- topography contribution to discuss
- need more data to extract HK discriminant (problem of small domain)

